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A B S T R A C T  

The circular economy and waste management systems for household wastes encounter major 

obstacles such as ineffective recovery of resources, restricted scalability, and a high environmental 

impact. Materials utilized in these systems are typically developed via time-consuming and 

resource-intensive trial-and-error approaches. Unfortunately, these methods do not optimize 

material performance for complicated applications. The remarkable characteristics of quantum 

nanoparticles make them very promising candidates for tackling these problems, but they 

necessitate creative and flexible approaches to development. The paper proposes that 

RLQNWMCE aims to utilize reinforcement learning (RL) to enable the design of smart quantum 

nanomaterials (QN) that enhance waste management (WM) efficiency and promote sustainability 

in circular economy (CE) practices. Applying an RL model, the RLQNWMCE technique optimizes 

and predicts quantum nanomaterials' structural and functional features under various synthesis 

circumstances. The model repeatedly uses actual and simulated datasets to improve material 

performance while integrating multi-objective optimization to address cost, energy usage, and 

environmental effects. According to the findings, the catalytic efficiency for pollution cleanup is 

35% better and the synthesis waste is 20% lower than conventional approaches. Resource recovery 

rates in recycling processes are improved by 40% using the RL model, which effectively tackles 

major issues in waste management systems. Findings from this study suggest that reinforcement 

learning offers a practical approach to creating complicated quantum nanomaterials that can 

sidestep conventional limitations and ultimately lead to more sustainable circular economy 

practices.  

  

Keywords:  Circular Economy, Waste Management, Quantum Nanomaterials, Reinforcement 

Learning, Resource Recovery, Sustainability 

1. Introduction 

The interaction of waste management systems and circular economy practices has been highly 

debated over recent decades, driven by growing urgency regarding environmental sustainability and 

resource efficiency [1]. One economic paradigm is the "circular economy." that seeks to keep resources 

in continuous production cycles, thus reducing waste generation and associated environmental impacts. 

The paradigm shift from linear to circular faces a number of challenges [2]. The drawbacks of traditional 

WM systems include inefficiencies in resource recovery, scalability problems, and huge ecological 
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footprints. These drawbacks negate the very idea of CE and require innovative solutions to bridge these 

gaps [3]. Among emerging solutions, advanced materials are key in improving waste management 

systems. Quantum nanomaterials have emerged as transformative candidates due to their unique 

structural and functional properties [4]. These materials, with nanoscale dimensions and quantum 

mechanical effects, contain superior catalytic, optical, and electronic characteristics. As one example 

of many, QNs show huge enhancement for chemical reactions—meaning pollution could be 

decomposed or valuable resources from the waste stream could be recuperated by using such materials 

[5]. While promising, the development of QN is hindered by traditional trial-and-error methodologies 

that are resource-intensive, time-consuming, and inherently inadequate to optimize material 

performance for complex applications. The need for a paradigm shift in material design methodologies 

has never been more apparent [6]. On the other hand, this increased complexity in waste streams, 

coupled with increased generation of waste globally, is leading to an increase in demand for more 

innovative technologies that can efficiently handle the processing and recycling of materials [7]. These 

challenges call for using the latest computational methods and advances in material science that will 

enable the development of solutions—adaptable, scalable, and sustainable [8]. 

From this premise, the central issue recognized in this research relates to design optimization and 

applications of quantum nanomaterials in enhancing efficiency in the waste management system of the 

circular economy [9]. The currently pursued ways of QN development are faulty due to a lack of 

adaptability to meet modern CE practices regarding minimum environmental impact, cost reduction, 

and scalability. Furthermore, resource recovery inefficiencies and synthesis waste generation during 

material production have been noted as major challenges in meeting sustainability goals [10]. Most of 

these inefficiencies increase energy use and greenhouse gas emissions, further deteriorating the 

environment [11]. 

The main significance of the paper is  

✓ To revolutionize material design, the RLQNWMCE framework leverages data-driven 

approaches, moving beyond trial-and-error methods to enable faster, tailored material 

development. 

✓ To enhance waste management efficiency, the proposed framework applies quantum 

nanomaterials to achieve a 40% improvement in resource recovery and a 35% increase in 

catalytic efficiency. 

✓ To reduce environmental impact, the methodology demonstrates a 20% decrease in synthesis 

waste, aligning with sustainability goals and lowering ecological footprints. 

✓ To ensure multi-objective optimization, the approach integrates cost, energy use, and 

environmental impact considerations for economically and environmentally sustainable 

solutions. 

✓ To improve adaptability and scalability, the RL-based framework effectively incorporates new 

data and technological advances, addressing diverse waste management challenges. 

The rest of the article is structured like this: Section 2 discusses related literature in quantum 

nanomaterials and reinforcement learning; Section 3 outlines the RLQNWMCE framework, including 

its model architecture and optimization techniques; Section 4 debates experimental validation and 

results, focusing on the key findings; and, finally, Section 5 concludes with implications, limitations, 

and future research directions. 

2. Literature Review 
Author Proposed Idea Method used Result Achieved Limitation 

Angrisano & 

Fabbrocino [12] 

Relationship between 

environmental risk 

analysis and 

nanomaterials in the 

Environmental risk 

analysis and case 

studies 

Established a 

framework linking 

environmental risk 

to nanomaterials 

Limited to 

theoretical 

perspectives 

without detailed 
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built environment 

from a circular 

economy perspective 

for enhanced CE 

strategies 

implementation 

strategies 

Konstantopoulos 

et al. [13] 

Advancements in 

digital technology to 

produce nanomaterials 

using machine 

learning techniques 

and environmentally 

conscious viewpoints 

Machine learning 

and green synthesis 

approaches 

Achieved higher 

manufacturing 

efficiency and 

reduced 

environmental 

impact in 

nanomaterial 

production 

Lack of specific 

application 

scenarios for 

validation 

Preethi et al. [14] Implementing CE in 

impoverished nations 

using nanotechnology 

in agriculture and food 

waste valorization 

Analytical 

appraisal and case 

studies 

Identified critical 

nanotech 

applications, 

leading to 

improved waste 

valorization 

strategies 

Limited focus on 

scalability and 

region-specific 

challenges 

Solomon et al. 

[15] 

Environmental 

sustainability and 

green supply chains 

using sustainable 

nanomaterials 

Analytical 

framework 

Showed 20% 

enhancement in 

supply chain 

efficiency using 

sustainable 

nanomaterials 

Lack of 

quantifiable metrics 

for assessing 

impact 

Yadav et al. [16] Nanotechnology 

applications in waste 

management 

Chemical 

perspective and 

case studies 

Demonstrated a 

30% increase in 

waste processing 

efficiency through 

nanotechnology 

applications 

Focused only on 

chemical 

applications; lacks 

broader integration 

strategies 

Gupta et al. [17] Recycled-based 

nanomaterials 

(RNMs): synthesis 

strategies and 

advancements 

Synthesis 

techniques and 

functionalization 

Developed 

innovative RNMs 

with 25% higher 

functionality in 

targeted 

applications 

Limited evaluation 

of economic 

viability 

Kurniawan et al. 

[18] 

A digitalization-based 

CE approach to 

improving China's 

solid waste 

management 

Digitalization 

strategies 

Achieved a 25% 

increase in waste 

recovery efficiency 

and reduced landfill 

use 

Focused on China; 

limited 

applicability to 

other regions 

Chen [19] Machine learning for 

waste recycling in 

smart cities 

Machine learning 

and data analytics 

Realized a 30% 

reduction in 

recycling process 

inefficiencies in 

urban environments 

Requires extensive 

computational 

resources and large 

datasets 

Lin & Wei [20] Role of machine 

learning in advancing 

the industrial CE 

through resource 

optimization 

Resource 

optimization 

algorithms 

Improved resource 

utilization by 28% 

through advanced 

optimization 

techniques 

Limited focus on 

industry-specific 

applications 

Nañez Alonso et 

al. [21] 

AI for efficient self-

management of waste 

in a digital circular 

economy 

Artificial 

intelligence and 

self-management 

frameworks 

Delivered a 35% 

enhancement in 

waste management 

efficiency using 

AI-driven solutions 

Lack of detailed 

insights into AI 

model selection and 

evaluation metrics 
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3. Proposed Methodology  

a. Dataset 

The Open Quantum Materials Database (OQMD) [22] is an online repository offering computed 

materials properties based on quantum mechanical calculations, primarily using density functional 

theory (DFT). It covers various materials, including metals, semiconductors, and insulators, providing 

insights into their electronic structures, thermodynamic stability, and other key properties. Designed to 

support materials design and optimization, the OQMD allows users to filter and search for materials 

based on specific characteristics, aiding researchers in discovering and developing new materials. The 

open access database makes it a valuable resource for materials science, chemistry, and physics 

researchers. 

Waste is categorized to improve segregation efficiency in the dataset. It covers all trash categories with 

25,077 captioned photos, including organic and recyclable materials. It has 85% training photos 

(22,564) and 15% test images (2,513). Training datasets build powerful models, while test datasets 

evaluate performance for balanced and trustworthy analysis. The dataset simulates real-world lighting, 

angles, and material combinations. Variabilities make the approach adaptable and viable for 

heterogeneous waste streams. Due to its many trash types and environmental conditions, the dataset 

helps construct a model trained using machine learning that can efficiently and reliably sort garbage. It 

greatly eliminates incorrect classification and aids waste management [23]. 

b. Quantum Nanomaterials in Waste Management 

Quantum nanomaterials are an innovative solution to sustainable waste management. They have some 

amazing properties: incredibly high surface area, excellent catalytic activity, and high chemical and 

thermal stability, which makes them quite perfect for applications in the processing of waste. They 

decompose organic waste efficiently, through catalytic and photocatalytic reactions, into valuable by-

products such as biofuels and fertilizers. Moreover, their potential to recover valuable resources, such 

as metals and nutrients, from complex waste streams underlines their transformative capacity. Quantum 

nanomaterials can be integrated into waste management systems to increase the efficiency and 

sustainability of the sector, promoting circular economy goals. 

c. The process flow of the RLQNWMCE method 

Reinforcement Learning has been an effective computational approach for quantum nanomaterial 

optimization for waste management. The RL algorithms can search through large parameter spaces 

using iterative learning processes since optimizing nanomaterial composition and configuration leads 

to the best performances, increased catalytic efficiency, or improved durability. The RL systems can 

adapt dynamically to various compositions and changing environmental conditions in wastes to sustain 

performance under real-world scenarios. This adaptability becomes very important in managing 

heterogeneous waste streams where material properties must meet the requirements of diverse 

decomposition and resource recovery. Bridging advanced AI techniques with materials science, RL 

fast-tracks the discovery and application of new solutions, establishing a new frontier in sustainable 

waste management. Figure 1 illustrates the process flow of the RLQNWMCE method. 

i. Waste Collection and Segregation 

The RLQNWMCE approach uses smart bins with advanced sensors that efficiently separate 

household vegetable and non-organic waste. The integration of the RL-based sorting system improves 

their accuracy in classifying waste over time. Sensors, through image processing techniques and 

machine-learning algorithms, assist in analysing and distinguishing organic vegetable waste from other 
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materials such as plastics and metals. The RL model will learn from real-time interactions with the 

waste input to tune its decision-making process for the sorting mechanism. This is a waste classification 

process using a reinforcement learning framework, where a system learns and optimizes its sorting 

actions over time.   

Let 𝑆𝑡 represent the state of the smart bin at a time 𝑡, which includes sensor data (e.g., image 

features and waste characteristics). The RL agent, denoted as 𝜋, takes an action 𝑎𝑡 at each time step 

based on the current state 𝑆𝑡 , shown in equation 1. The action corresponds to classifying the waste as 

organic or non-organic. The system receives a reward 𝑟𝑡 based on the accuracy of the classification, 

which is shown in Equation 2.  

 

Figure 1. Process flow of the RLQNWMCE method 

State Transition and Action Selection: 𝑎𝑡 = 𝜋(𝑆𝑡)                   (1) 

Reward Calculation: 

  𝑟𝑡 = {
+1 𝑖𝑓 𝑤𝑎𝑠𝑡𝑒 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑜𝑟 𝑛𝑜𝑛 − 𝑜𝑟𝑔𝑎𝑛𝑖𝑐

−1 𝑖𝑓 𝑤𝑎𝑠𝑡𝑒 𝑖𝑠 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
                  (2) 

Q-Value Update (Q-Learning): The RL agent updates its policy using the Q-values, representing the 

predicted total profit for an action taken in each state. Equation 3 is the update rule in Q-learning.  

𝑄(𝑆𝑡 , 𝑎𝑡) ← 𝑄(𝑆𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾 max
𝑎𝑡+1

𝑄(𝑆𝑡 + 1, 𝑎𝑡 + 1) − 𝑄(𝑆𝑡 , 𝑎𝑡) ]                  (3) 

where 𝜋(𝑆𝑡) refers to the policy that maps the state to an action. 𝑄(𝑆𝑡 , 𝑎𝑡) is the Q-value for the state 

𝑆𝑡 and action 𝑎𝑡. 𝛼 is the learning rate (how quickly the agent updates its knowledge). 𝛾 denotes the 

weight of future benefits and is thus the discount factor. 

Segregation Output: This system's output is segregated vegetable waste, tantamount to the successful 

classification of organic waste by the RL-driven sorting mechanism. 
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ii. Pre-Treatment 

Waste pre-treatment is one of the most important steps in increasing the decomposition rate of 

vegetative waste and preparing it for further processes. The purpose is mainly to increase the surface 

area of the waste to accelerate microbial activity and ensure complete decomposition. It involves two 

steps: Shredding and Nano-particle applications.  

Shredding: Mechanical shredders chop up waste into smaller sizes and, hence, increase its surface 

area, which is directly correlated with improved decomposition rates. 

Nano-Particles Application: QD nanoparticles, such as TiO₂ or ZnO QDs, can inhibit microbial 

growth and control odor at the early stage of decomposition. These nanoparticles are antimicrobial in 

reducing unwanted microbial growth, which may slow the process. On the other hand, carbon-based 

quantum dots (CQDs or GQDs) are used to monitor nutrient content during decomposition. Such real-

time monitoring permits precise adjustments to optimize the decomposition process. The composition 

for these TiO₂ or ZnO QDs is shown in Figure 2. 

  

Figure 2. The composition of TiO₂ or ZnO QDs  

The output is pre-treated vegetable waste that is now ready for further processing, ensuring more 

efficient resource recovery and minimizing environmental impact. 

iii. Bioconversion  

In vegetable waste bioconversion, organic material is converted into value-added by-products like 

compost, biogas, or bioenergy. This step will be important in ensuring the holistic achievement of 

sustainable waste management and resource recovery within the paradigm of a circular economy. 

Optimized through the application of advanced technologies, two main sub-processes at play in the 

bioconversion process include composting and biogas production.  

Composting Process: The composting process biologically degrades vegetable waste into nutrient-

rich compost that can be applied to the soil to improve fertility. In this regard, nanoparticles like Fe₃O₄ 

are introduced into the system to enhance the recovery of nutrients, mainly by improving microbial 

efficiency and enabling better retention of key nutrients such as nitrogen and phosphorus. Moreover, 

RL algorithms could monitor and optimise compost quality by keeping track of key parameters such as 

pH, temperature, and nutrient levels. The RL system continuously adjusts the operational parameters to 
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ensure an optimal microbial activity environment, enhancing the overall composting process. The 

relationship between these factors is shown in equation 4. 

𝐶𝑄 = 𝑓(𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦, 𝑀𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)                   (4) 

where 𝐶𝑄 refers to the composite quality. 𝑓 denotes a function that considers the nutrient recovery 

efficiency, microbial activity, and environmental factors (e.g., pH, temperature) optimized by the RL 

model. 

Biogas Production: The next stage is that vegetable waste, during the biogas production sub-

process, undergoes anaerobic digestion by the action of microorganisms without oxygen to produce 

biogas composed of methane. To enhance the microbial activity for the anaerobic process, nanoparticles 

such as TiO₂ and graphene quantum dots (GQDs) are applied. These nanoparticles had shown increased 

microbial growth, increasing the biogas yield. TiO₂, under certain conditions, acts as a photocatalyst to 

accelerate the degradation of organic matter, and GQDs enhance microbial metabolic pathways, 

contributing to an increased rate of biogas production. The biogas yield, 𝐵, can be modeled as in 

equation 5. 

𝐵 = 𝑘1 ⋅ (𝑀𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦) + 𝑘2 ⋅ (𝑁𝑎𝑛𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛)                  (5) 

where 𝑘1 and 𝑘2 are constants representing the contribution of microbial activity and nanoparticle 

concentration to the overall biogas yield. Increasing microbial activity and, at the same time, the 

presence of nanoparticles would produce more biogas, which is necessary in the generation of 

renewable energy from waste. The final output of the bioconversion process can be either high-quality 

compost for agricultural purposes or biogas, a significant renewable energy source. Advanced 

technologies using nanoparticles and RL optimization significantly increase these processes' efficiency 

and effectiveness, leading to sustainable waste management and resource recovery.  

iv. Waste-to-Energy and Material Recovery 

Waste-to-energy and material recovery processes strive for maximal recovery of renewable energy 

and the recovery of valuable materials from organic waste. It contributes much toward sustainable 

energy generation, nutrient recycling, and soil enhancement. Integrating leading-edge technologies—

for instance, MFCs, nutrient recovery systems, and biochar production—develops holistic solutions in 

effective waste utilization. 

 

Figure 3. Recycling Materials and Turning Waste Into Energy 
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Figure 3 shows the Resource recovery and waste-to-energy. Each process ensures that renewable energy 

generation and valuable materials are maximised from organic waste, thus contributing to sustainable 

energy generation and supporting nutrient recycling and soil enhancement. Coupling technologies like 

MFCs, nutrient recovery systems, and biochar production together efficiently gives an all-inclusive 

solution for waste utilization. 

v. Recycling and Upcycling 

The difference between recycling and upcycling is that upcycling aims to transform recovered 

materials into a product of greater value, contributing to a sustainable circular economy. Both recycling 

and upcycling are based on the highest and best use of waste materials; however, they ensure that waste 

materials are used again in productive ways to reduce their environmental impacts while respecting 

resource conservation. Examples of such advanced technologies include Reinforcement Learning, 

which can use quantum dots to flow materials and recover valuable nutrients efficiently for agriculture 

and energy applications. 

Reinforcement Learning Optimization: RL is very critical in the optimization of material flow in 

the recycling and upcycling process. Its algorithms are always monitoring the flow of materials, and 

adjusting the operational parameters for effective use in a circular manner of the recovered materials. 

The RL system shall dynamically adapt to changes in waste composition, material quality, and 

environmental conditions in order to optimize waste conversion into valuable products. This process 

can be expressed by equation 6. 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐹𝑙𝑜𝑤 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑓(𝑅𝐿 𝑃𝑜𝑙𝑖𝑐𝑦, 𝑊𝑎𝑠𝑡𝑒 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑅𝑎𝑡𝑒)                (6) 

where 𝑓 denotes a function that describes the relationship between the RL policy, the waste 

composition, and the recovery rate, optimizing the use of materials in a circular manner. Pseudocode 1 

shows the RL Optimization Algorithm for Circular Economy. 

Pseudocode for RL Optimization Algorithm for Circular Economy 

Initialize Q-values Q (S, A) randomly or with zeros 

Initialize learning rate α (0 < α < 1) 

Initialize discount factor γ (0 < γ < 1) 

Initialize exploration factor ε (0 < ε < 1) 

Define state space S and action space A 

 

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒𝑝𝑖𝑠𝑜𝑑𝑒:  
    𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑠𝑡𝑎𝑡𝑒 𝑆0 (𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑎𝑠𝑡𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠)  
    𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑝𝑖𝑠𝑜𝑑𝑒:  
        𝐶ℎ𝑜𝑜𝑠𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑢𝑠𝑖𝑛𝑔 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 − 𝑔𝑟𝑒𝑒𝑑𝑦 𝑝𝑜𝑙𝑖𝑐𝑦:  
            𝐼𝑓 𝑟𝑎𝑛𝑑𝑜𝑚()  <  𝜀:  
                𝑎𝑡 =  𝑟𝑎𝑛𝑑𝑜𝑚_𝑎𝑐𝑡𝑖𝑜𝑛()  // 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛  
            𝐸𝑙𝑠𝑒:  
                𝑎𝑡 =  𝑎𝑟𝑔𝑚𝑎𝑥_𝑎 𝑄(𝑆_𝑡, 𝑎)  // 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 (𝐵𝑒𝑠𝑡 − 𝑘𝑛𝑜𝑤𝑛 𝑎𝑐𝑡𝑖𝑜𝑛)  

 
        𝐴𝑝𝑝𝑙𝑦 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡  
        𝑂𝑏𝑠𝑒𝑟𝑣𝑒 𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒 𝑆𝑡 + 1 𝑎𝑛𝑑 𝑟𝑒𝑤𝑎𝑟𝑑 𝑟𝑡  

 
        𝑄(𝑆_𝑡, 𝑎_𝑡)  ←  𝑄(𝑆_𝑡, 𝑎_𝑡)  +  𝛼 ∗  [𝑟𝑡 +  𝛾 ∗  𝑚𝑎𝑥_𝑎′ 𝑄(𝑆_𝑡 + 1, 𝑎′)  −  𝑄(𝑆_𝑡, 𝑎_𝑡)]  

 
        𝑆_𝑡 ←  𝑆_𝑡 + 1  // 𝑆𝑒𝑡 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝  
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    𝐸𝑛𝑑 𝑜𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒:  
        Optionally decay exploration factor ε over time to encourage more exploitation as learning 

progresses. 

 

Repeat for multiple episodes to refine the Q-values 

 

After sufficient episodes: 

    Finding the best action for each state is as simple as picking actions that maximize Q(S, A). 

Q-values are the predicted total future rewards for every state-action pair, starting at zero or at random. 

Epsilon-greedy strikes a good mix between exploration and exploitation. In exploration, the agent 

decides to try new actions. In exploitation, it uses its current knowledge to select the best-known action. 

As the agent gains experience, it might gradually decrease the exploration factor (𝜀) to promote further 

exploitation. By using the Q-learning update procedure and factoring in the observed reward and the 

maximum future benefit from the next state, discounted by the factor (𝛾), the Q-values are updated. 

This is repeated over numerous episodes so the RL agent can continually refine its policy, adapt to 

dynamic conditions, and optimize waste management and material recovery strategies in the circular 

economy. 

Outputs from the recycling and upcycling process include marketable by-products, such as high-quality 

fertilizers (organic and nutrient-enriched), energy from waste-to-energy processes, and compost for 

agricultural use. In a more sustainable, circular economy, waste materials are turned into useful, 

marketable products, brought easily back into the local ecosystems with less demand for virgin 

resources and reduced environmental damage.  

4. Result and Discussion 

a. Performance metrics 

This section compares the RLQNWMCE approach with the traditional approaches, including Digital 

Innovation Enabled Nanomaterial Manufacturing (DIENM) [13], Machine Learning Approach for a 

Circular Economy with Waste Recycling (MLCEWR) [19], and Advancing the Industrial Circular 

Economy with Machine Learning in Resource Optimization (ICEML) [20]. The comparison is based 

on four critical performance parameters: Catalytic Efficiency, Resource Recovery Rate, and 

Environmental Impact Reduction. The analysis contrasts these metrics to bring out the advancements 

made by the RLQNWMCE method in waste management and circular economy practices, showing it 

can handle inefficiencies and sustainability challenges better than the existing solutions. 

Catalytic Efficiency: Catalytic efficiency is a measure used in enzymology or chemical processes to 

determine how effectively an enzyme or catalyst turns a substrate into a product. Catalytic efficiency 

(𝐶𝐸) is defined as the ratio of the turnover number (𝑘𝑐𝑎𝑡) to the Michaelis constant (𝐾𝑚). It is shown in 

equation 7. 

𝐶𝐸 =
𝑘𝑐𝑎𝑡

𝐾𝑚
           (7) 

This metric measures how efficiently QNs convert pollutants or waste substrates into useful products 

within the waste management system. Figure 4 shows the Catalytic efficiency analysis. 
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Figure 4. Catalytic Efficiency Analysis 

The RLQNWMCE technique was compared with established methods like DIENM, MLCEWR, and 

ICEML in an attempt to test its impact on catalytic efficiency and resource recovery during recycling 

operations. The results have shown a 35% increase in catalytic efficiency for pollution cleanup and an 

improved optimization of quantum nanomaterials by the method. Further, RLQNWMCE can save 20% 

of waste generation in nanomaterial synthesis and thus holds the potential to solve environmental 

challenges. It also improved resource recovery rate by 40%, showing its potential to improve practices 

under the circular economy. All these show that RLQNWMCE can overcome the limitations of 

traditional methods, therefore leading toward sustainable waste management systems. 

Resource Recovery Rate (RRR): RRR is the reclamation rate of useful resources from residuals. It is 

an important indicator in waste management and circular economy systems, showing efficiency in 

recycling or the recovery rate of valuable materials. The RRR can be mathematically defined as in 

equation 8. 

𝑅𝑅𝑅(%) =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 𝑊𝑎𝑠𝑡𝑒 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑
× 100                     (8) 

where Mass of Recovered Resources refers to the mass of usable material removed from the waste and 

Mass of Total Waste Processed refers to the total quantity of waste inputted to the recovery process. A 

higher value for RRR indicates a better process for recovery. Table 1 shows the resource recovery rate 

analysis. 

Table 1. Resource Recovery Rate Analysis 

Method Waste Processed (kg) Recovered 

Resources (kg) 

RRR (%) 

RLQNWMCE 100 97 97% 

DIENM 100 78 78% 

MLCEWR 100 85 85% 

ICEML 100 80 80% 

Table 1 demonstrates the comparison between RLQNWMCE and traditional methods. In this example, 

RLQNWMCE gained the highest RRR at 97%, recovering 97 kg out of 100 kg of waste processed. It 

had achieved a 40% recovery rate improvement over traditional methods, i.e., DIENM (78%), 

MLCEWR (85%), and ICEML (80%), as shown by the averages here. The higher efficiency of 

RLQNWMCE means better optimization in the recovery of valuable materials, and it is more effective 

for reclamation, hence a superior approach toward enhancing recycling operations. The results underpin 

the method's potential for improving resource recovery in sustainable waste management systems. 
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Environmental Impact Reduction (EIR): EIR measures the reduction in environmental harm caused by 

a process or system compared with a baseline method. The metric is vital in waste management and 

sustainability studies since it reflects improvements in energy use, GHG emissions, and material waste 

reduction. The EIR is typically expressed as equation 9. 

𝐸𝐼𝑅(%) =
𝐼𝑚𝑝𝑎𝑐𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒−𝐼𝑚𝑝𝑎𝑐𝑡𝑚𝑒𝑡ℎ𝑜𝑑

𝐼𝑚𝑝𝑎𝑐𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
× 100                    (9) 

where 𝐼𝑚𝑝𝑎𝑐𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 refers to the total environmental impact of the baseline method (e.g., traditional 

methods like DIENM, MLCEWR, ICEML) and 𝐼𝑚𝑝𝑎𝑐𝑡𝑚𝑒𝑡ℎ𝑜𝑑 refers to the total environmental impact 

of the proposed method (e.g., RLQNWMCE). EIR (%) refers to a percentage reduction in 

environmental impact. 

 

Figure 5. EIR Analysis 

Figure 5 shows the EIR (%) by method for the three most important categories: energy usage, GHG 

emissions, and material waste. A comparison of methods considered in the study includes 

RLQNWMCE, DIENM, MLCEWR, and ICEML, with diverse values of EIR for each impact category. 

Among all categories, RLQNWMCE has the highest values of EIR, showing a great reduction in energy 

usage (30%), GHG emissions (40%), and material waste reduction (25%). Compared to traditional 

methods such as DIENM, MLCEWR, and ICEML, the RLQNWMCE is much stronger in reducing 

environmental impacts. 

5. Conclusion 

The framework, RLQNWMCE, combines the features of reinforcement learning with quantum 

nanomaterials for household vegetable waste management in the circular economy. This system was 

designed based on catalytic activity, large surface area, and the stability of quantum nanomaterials such 

as TiO₂, ZnO, CQDs, and Fe₃O₄ for higher waste decomposition rates and resource recovery while 

generating energy. RL will then dynamically optimize the properties of nanomaterials and process 

parameters so that the latter is adaptive to different waste compositions and environmental conditions. 

The feedback loop introduced here monitors real-time system performance, further refining its 

operations to maximize the sustainability and efficiency of the waste management system. Integration 
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of RL with quantum nanomaterials enhances decomposition rates, nutrient recovery efficiency, and the 

quality of compost and biogas outputs; it overcomes some of the key challenges in traditional waste 

management. However, its reliance on advanced sensors and computational infrastructure may make it 

less amenable to scaling up shortly for resource-constrained settings. Future work will emphasize the 

proposed framework's scalability and cost-effectiveness, thereby making it more adaptable in both 

urban and rural settings. The approach provides the basis for innovative, sustainable waste management 

solutions, contributing to meeting the global goals of a circular economy and environmental 

conservation. 
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