
Journal of Quantum Nano- Green Environmental Systems (QNGES) 
 

https://qnges.saharadigitals.com/     
 

 

14 

Vol.No : 1 Issue No : 1 Jan 2025 

APPLICATIONS AI-DRIVEN SOLAR ENERGY 

MANAGEMENT SYSTEM FOR SMART GRIDS USING 

PREDICTIVE ANALYTICS AND ADAPTIVE 

CONTROL 

Ido Peters1, Gadekallu Kamrul2 

1Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International 

Islamic University Malaysia (IIUM), Kuala Lumpur, 53100, Malaysia 

2Institute for Infocomm Research (I2R), Singapore  

 

A B S T R A C T  

Power distribution that is smart, sustainable, and efficient is the result of a new generation of energy 

networks that use cutting-edge technology. Solar energy management systems utilizing AI can 

mitigate the effects of renewable power generation intermittency and fluctuations in energy demand 

to improve smart grid operational efficiency. The paper proposes SEMS-PA2C, an artificial 

intelligence (AI) powered solar energy management system (SEMS) for smart grids that employs 

adaptive control (AC) and predictive analytics (PA) to enhance energy sustainability and reliability. 

The SEMS-PA2C uses weather and past solar generation data to train prediction models using 

Gradient Boosting and Long Short-Term Memory (LSTM) networks. Adaptive control uses 

Reinforcement Learning (RL) to optimize energy distribution by balancing grid needs with battery 

storage utilization. The system is evaluated by running simulations on smart grid datasets 

incorporating real-world solar energy metrics and grid load profiles. According to major findings, 

the approach enhances solar energy utilization by 20% and reduces grid dependency by 15% 

compared to typical control systems. The adaptive control system also reduced energy losses during 

peak hours by 10%, which enhanced grid stability. According to the study's findings, a scalable 

solution to the challenge of developing sustainable power grids is smart grids that integrate adaptive 

control with predictive analytics to manage solar energy efficiently. 
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1. Background and Introduction 

Smart grids represent a new paradigm for the energy industry by incorporating tools that allow for 

properly managing information concerning efficiency, reliability, and sustainability in power 

distribution [1]. In contrast to conventional electric grids, smart grids employ automation, dynamic 

information, and telecommunications to guide the electricity toward the expectations of industry 

evolution efficiently, incorporating consumers’ vast aggregates, renewable and even a broader base of 

future electric load [2]. The capability of managing the intermittency and weather dependence of 

renewable sources, such as solar, is among the most attractive features of smart grids [3]. To optimize 
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the use of solar energy, advanced management systems must ensure the reliability of the grid [4]. 

Managing solar energy within smart grids requires systems that can accommodate changes in the 

amount of solar energy generated and respond flexibly to shifts in energy requirements [5]. Diagram 1 

shows the structure of smart grids. 

AI is one of the relevant technologies that will help address these challenges as it offers modelling 

tools, predictive analytics, and adaptive control mechanisms [6]. In this sense, predictive analytics is 

useful in determining solar energy production and consumption forecasting. At the same time, adaptive 

control receptors ensure the effective distribution and storage of energy in the relevant timeframe [7]. 

Industrially, this combination helps, on the one hand, to increase the supply of solar energy while, on 

the other, taking away dependence on other energy sources, thus making it sustainable [8]. The 

discontinuity of renewable energy and the highly stochastic consumption patterns do, in most cases, 

lead to energy wastage and instability of the grid. Traditional control systems are not agile enough to 

adapt to such dynamics, resulting in suboptimal energy utilization and reduced reliability. To fill this 

gap, this research provides intelligent, scalable solutions that integrate predictive analytics with adaptive 

control [9].  

 

Figure 1. Architecture of the Smart Grids 

The SEMS-PA2C approach is AI-driven for optimizing solar energy management within smart 

grids. What brings novelty to this is the use of the latest in machine learning models for prediction 

combined with reinforcement learning-based adaptive control mechanisms. SEMS-PA2C follows a 

two-layered approach to optimizing solar energy management. PA, a Gradient Boosting algorithm and 

LSTM networks process meteorological data and historical solar generation records to predict solar 

energy production and consumption trends for proactive energy scheduling. AC uses RL algorithms to 

adjust the energy flow dynamically, balancing the demands from the grid and battery storage utilization 

while reducing energy losses during peak hours. The system is tested using simulation with real-world 

datasets of smart grid parameters such as solar radiation, weather conditions, grid load profiles, and 

energy storage capacities. It also evaluates the performance metrics of energy utilization, grid 

dependency, and peak-hour energy loss to assess the effectiveness of SEMS-PA2C. 

The main contribution of the paper is  

✓ To introduce a novel AI-driven solar energy management system that integrates predictive 

analytics and adaptive control for enhanced grid performance. 

✓ To achieve a 20% improvement in solar energy utilization compared to traditional methods 

by employing advanced machine learning models. 

✓ To reduce energy losses during peak hours by 10% through the adaptive control 

mechanism, contributing to a more stable and reliable grid. 

✓ To provide a scalable framework for managing renewable energy sources, aligning with 

global efforts to create environmentally friendly and sustainable power grids. 
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The paper's outline is as follows: The paper begins with an overview of smart grid technologies and the 

challenges of solar energy management in Section II. Section III details the SEMS-PA2C system, 

covering predictive analytics and adaptive control methodologies. Section IV describes the 

experimental setup and evaluates performance using real-world datasets. Section V presents the key 

findings and discusses their implications for smart grids. Finally, Section 6 concludes with research 

insights and future directions. 

2. Related Works 

Wen, Xin, et al.  [10] proposed an AI-driven framework for optimising solar energy generation and 

integrating smart grids. Machine learning applications in optimising solar power output for better grid 

management were explored using Support Vector Regression and Artificial Neural Networks. These 

results show significant enhancements in energy efficiency and improvement in the predictability of 

solar output by a large margin. Still, it had the limitations of requiring huge amounts of data for training 

the models and some challenges in real-time implementation, which might obstruct the practical 

application of the solutions proposed in different operational environments. 

Bouquet, Pierre, et al. [11] proposed an AI-based forecasting framework with a deep learning model 

to enhance smart grid efficiency and solar energy management. It applied a grid search method for 

optimal feature selection and added early stopping during training to improve model performance. The 

results show a dramatic decline in the forecasting accuracy with an increase in the horizon, where R² 

declined from 0.79 to 0.17. Limitations included reduced effectiveness for longer forecasting horizons 

and the possibility of irrelevant features impacting performance. 

Ukoba, Kingsley, et al. [12] presented an integrative approach with artificial intelligence for 

optimising renewable energy systems, aiming at efficiency and sustainability. It has adopted the 

systematic literature review methodology in analyzing previous research to identify existing gaps and 

emerging trends. The result showed that AI could considerably improve energy forecasting and resource 

allocation, leading to better decisions in managing RES. However, it comes with some limitations, 

including data quality challenges, biases in AI models, and the environmental impact of AI operations, 

all of which had to be weighed for responsible implementation. 

Kaur, Swapandeep, et al. [13] proposed an integrated artificial intelligence system to manage smart 

grids to improve energy efficiency and maximise solar energy. It has been applied to the field of 

predictive analytics, processing of real-time data, and automated maintenance scheduling with 

advanced AI algorithms in predicting energy production. Results obtained show improved energy 

production, better integration with the grid, and improved solar panel performance. Its limitations 

include data security and privacy concerns, the need for reliable AI models, and gaining stakeholder 

confidence in AI-driven systems. 

Arévalo, Paul, and Francisco Jurado [14] presented a holistic framework for integrating artificial 

intelligence into the distributed energy systems of the smart grid. The methodology followed was based 

on a systematic literature review, case study, and comparative analysis to demonstrate its effectiveness. 

The results showed dramatic improvements in the energy system's efficiency, reliability, and scalability. 

However, these are constrained by integrating AI with the existing infrastructure, cybersecurity 

concerns, and the need for interdisciplinary research to overcome regulatory and technical hurdles while 

deploying AI solutions. 

Muniandi, Balakumar, et al. [15] presented Artificial intelligence-powered smart building energy 

management solutions, where energy consumption is optimized, efficiency enhanced, and sustainability 

ensured. The combination of advanced algorithms with machine learning and IoT devices makes it 

possible to implement such features as real-time monitoring and predictive analytics, adaptive control 

strategies, and integration of off-grid renewable sources into the system. Energy saving, carbon 

footprint reduction, comfort of spaces for users, and greater operational efficiency were some of the 

results obtained. However, issues related to data privacy, integration complications and scaling have 



Applications AI-Driven Solar Energy Management System for Smart Grids Using Predictive Analytics and Adaptive 
Control 

17 

ISSN: 3079-6210 

hampered the uptake of these systems. Addressing these challenges may enable a positive 

transformation of these systems to provide sustainable and resilient built environments. 

Noviati, Nuraini Diah, et al. [16] suggested the utilization of AI within smart grids to enhance grid 

stability, decrease operational costs, and boost renewable energy usage. The research used machine 

learning algorithms such as LSTM and optimization techniques like Genetic Algorithms for forecasting 

energy generation, supply-demand balancing, and resource allocation optimisation. Results: 11.76% 

improvement in energy efficiency, 66.67% decrease in prediction errors, and a 20% reduction in costs. 

Limitations included reliance on simulations, scalability challenges, and infrastructure disparities across 

regions, requiring further real-world testing and adaptations. 

Lévy, Loup-Noé. [17] presented an advanced clustering and AI-driven decision-support system in 

energy management for complex heterogeneous systems, such as buildings. The article aimed to 

overcome existing energy diagnostics and optimization challenges with innovative clustering methods, 

such as pretopology, reducing dimensionality, and enabling better building grouping to give tailored 

recommendations for improving energy efficiency strategies. However, its limitations included data 

quality dependence, challenges in the automation of DSS processes, and difficulty in validating 

clustering accuracy due to the absence of ground truth and system complexity.  

3. Research Methodology 
a. Dataset 

Solar power is quickly rising to the ranks of the most promising renewable energy sources for use 

in homes, businesses, and factories. Recent years have seen a surge in interest in solar photovoltaic (PV) 

systems as a means of producing energy, thanks to the many benefits these systems offer. On the other 

hand, weather-related fluctuations in photovoltaic system power generation pose the biggest challenge 

to solar energy production. The economic profit of large-scale solar farms could take a serious hit due 

to the photovoltaic system's power imbalance. The efficient management of power grid production, 

delivery, and storage on a daily or hourly basis, as well as market decision-making, early participation 

in energy auction markets, and efficient resource planning all depend on accurate short-term power 

output forecasts of PV systems [18]. 

b. Smart Grids and Renewable Energy Integration 

In sustainable energy systems, smart grids are important in seamlessly integrating power into the 

system from renewable sources including solar, wind, and hydroelectricity. Advanced energy networks 

like these address the key renewables-related challenges: intermittency. Using predictive analytics, 

smart grids level out the fluctuating energy outputs of solar and wind resources so that the energy supply 

always remains stable and reliable. Further, it has smart grids with smart control systems that optimize 

the energy storage solutions—batteries—storing surplus renewable energy during off-peak periods for 

use during high demand. Additionally, the smart grids allow decentralized energy generation by 

fostering microgrids, which promise to provide energy resilience and reduce dependence on centralized, 

fossil-fuel-based power plants. This assures effectiveness in transforming energy into a sustainable, 

environmentally friendly, renewable energy supply system. Figure 2 shows the process flow of the 

SEMS-PA2C method. 

i. Data Collection and Preprocessing 

Efficient solar energy management requires trusted input data and a robust preprocessing 

mechanism for reliable prediction and further decision-making. Meteorological data, data on solar 

generation in the past, and profiles of grid load in real time are the input sources for intelligent solar 

energy management. Solar radiation is one of many variables included in meteorological data (𝑅𝑠, 

measured in 𝑊/𝑚2), temperature (𝑇, measured in ℃), cloud cover (𝐶𝑐, expressed as a percentage), and 

wind speed (𝑊𝑠, measured in 𝑚/𝑠). Historical solar generation data (𝑃𝑔𝑒𝑛) offers patterns spanning 

certain periods obtained from previous grid operations. Current energy demand can be captured using 

real-time grid load profiles (𝐿𝑑) and battery storage usage (𝐵𝑠), which are essential for synchronizing 
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solar generation with consumption requirements. Solar energy systems rely on these data sources for 

accurate analysis and decision-making. Preprocessing ensures the data is prepared for analysis: noise is 

eliminated, and the data is aligned for time-based modeling.  

 

 

Figure 2. Process flow of the SEMS-PA2C method 

Normalization: Scaling the input data to a uniform range ([0,1]), for numerical stability and to avoid 

any feature from dominating due to differences in scales, the min-max normalization formula is in 

equation 1. 

𝑋𝑛𝑜𝑟𝑚 =
(𝑋−𝑋𝑚𝑖𝑛)

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
          (1) 

Data cleaning involves accessing missing or inconsistent data to render the data reliable and 

accurate. Missing values are filled using methods like linear interpolation, whereby the value of the 

missing entry is replaced by the two freely available data points on either side of it. An outlier detection 

involves a combination of statistical analysis: Z-scores, which can say how is a standard deviation a 

data point from the mean. These outlying data points have Z-scores typically above a predetermined 

value of |Z| > 3. Various cleaning methods will eliminate noise and irregularities, resulting in improved 

quality datasets for analysis. The cleaning process is done through equation 2. 

𝑍 =
𝑋−𝜇

𝜎
           (2) 

Data segmentation: Data is divided into time intervals, matching meteorological data with grid 

load profiles for simultaneous analysis. This process coordinates corresponding data points across 

different sources temporally. This can be done by equation 3. 

𝐷𝑠𝑒𝑔(𝑡) = {(𝑅𝑠(𝑡), 𝑇(𝑡), 𝐶𝑐(𝑡), 𝑊𝑠(𝑡), 𝑃𝑔𝑒𝑛(𝑡), 𝐿𝑑(𝑡), 𝐵𝑠(𝑡))}                 (3) 

Data Alignment: Temporal alignment matches meteorological data, historical generation data, 

and real-time grid load profiles to the same time intervals. Let 𝑇𝑚 and 𝑇𝑔 represent the meteorological 

and grid load data timestamps, respectively. The alignment can be done through equation 4. 

𝑇𝑚 = 𝑇𝑔           (4) 
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where 𝑋 Original data value, and  𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥  are the minimum and maximum values of the feature, μ 

is the data set's average, 𝜎 is the standard deviation, and 𝐷𝑠𝑒𝑔(𝑡) is the segmented dataset at time 𝑡. 

ii. Predictive Analysis 

Gradient Boosting for Short-Term Forecasting: Gradient Boosting predicts short-term solar energy 

(𝑃𝑔𝑒𝑛
𝑠ℎ𝑜𝑟𝑡) with meteorological data as input features. This machine learning method works through an 

ensemble of decision trees in an iterative way, where each tree corrects the errors made by the previous 

ones. Gradient boosting minimizes the prediction error by optimizing a loss function. It captures the 

nonlinear relationships between the input variables, such as solar radiation, temperature, cloud cover, 

wind speed, and the corresponding solar energy output. The technique ensures accuracy and reliability 

for forecasting short-term solar generation. The model minimizes the loss (𝐿) between actual (𝑃𝑎𝑐𝑡𝑢𝑎𝑙 

) and predicted (𝑃𝑝𝑟𝑒𝑑) generation by equation 5. 

𝐿 = ∑ 𝐿𝑜𝑠𝑠(𝑃𝑎𝑐𝑡𝑢𝑎𝑙,𝑖, 𝑃𝑝𝑟𝑒𝑑,𝑖)𝑁
𝑖=1   

𝐿𝑜𝑠𝑠(𝑃𝑎𝑐𝑡𝑢𝑎𝑙 , 𝑃𝑝𝑟𝑒𝑑) =
1

𝑁
∑ (𝑃𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 − 𝑃𝑝𝑟𝑒𝑑,𝑖)

2𝑁
𝑖=1       (5) 

Long Short-Term Memory (LSTM) for Long-Term Forecasting: LSTM networks are applied in long-

term solar energy forecasting because they can capture and remember temporal dependencies in 

historical solar generation data. Besides handling time series data effectively, they can also remember 

various long-standing patterns and trends, making them appropriate candidates in predicting solar 

energy generation over long periods. As they are trained with past information, they can extrapolate 

future trends while considering weekly patterns, months of the year, seasonal variations, climatic trends, 

or other long-term patterns affecting solar power generation. LSTM model architecture is shown in 

equations 6 to 10. 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ(𝑡−1), 𝑥𝑡] + 𝑏𝑓)                     (6) 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)         (7) 

𝐶𝑡̃ = 𝑡𝑎𝑛ℎ(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)        (8) 

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ 𝐶𝑡̃                      (9) 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                    (10) 

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝐶𝑡)                     (11) 

where 𝑥𝑡  is the input at time 𝑡, ℎ𝑡 refers to the hidden state, 𝐶𝑡 is the cell state, 𝑊𝑓, 𝑊𝑖 , 𝑊𝐶 , 𝑊𝑜  are the 

weight matrices and 𝑏𝑓, 𝑏𝑖 , 𝑏𝐶 , 𝑏𝑜 are the biased terms. 

iii. Adaptive Control Using Reinforcement Learning for Grid Optimization 

Deploying reinforcement learning (RL) completes the real-time control to balance solar energy usage 

and grid reliability. The RL agents aim to learn a policy to maximize solar energy utilization, thereby 

minimizing dependency on the grid, losses, and operational costs. This involves constant adjustment to 

changes in solar generation and grid demand. 

iv. Reinforcement Learning for Grid Optimization:  

State Inputs: An important information for decision-making is the collection of state inputs that the RL 

agent receives, representing the current system conditions. Present solar power generation is one of 

these inputs. (𝑃𝑔𝑒𝑛), that shows the current solar power output throughout time; grid demand (𝐿𝑑), 

depicting the grid's current demand for energy consumption and the current state of battery storage (𝐵𝑠) 

demonstrates the quantity of energy currently stored in the battery that could be used later. The RL 
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agent can make efficient decisions on energy allocation between the grid, battery storage, and excess 

distribution based on real-time insights supplied by state variables such as solar power, grid load, and 

storage status. 

Action: The RL agent is programmed to respond to the system's present state to control the flow of 

energy to its various parts. Among these measures is the distribution of energy for use on the grid. 

(𝐴𝑔𝑟𝑖𝑑), when the energy generated by solar panels is used to fulfil the current energy needs of the grid. 

Storing energy in the battery (𝐴𝑠𝑡𝑜𝑟𝑎𝑔𝑒) enables the storage of surplus solar energy for future utilization 

while maintaining the battery within ideal charging parameters. Distributing excess energy (𝐴𝑒𝑥𝑐𝑒𝑠𝑠), 

where excess solar power can be directed to other systems or used for other reasons. In reaction to 

changes in solar generation and grid demand, the RL agent may optimize energy allocation and 

guarantee system efficiency by taking these actions in real-time. 

Rewards: The reward function guides the RL agent toward optimizing its policy. Reward the agent for 

maximizing the proportion of solar energy used directly by the grid or stored for future use. This can 

be obtained by equation 12. 

𝑅𝑒𝑤𝑎𝑟𝑑𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝛿 ⋅
𝑃𝑔𝑒𝑛

𝐿𝑑+𝐵𝑠
                                 (12) 

where 𝛿 is a factor encouraging higher solar energy utilisation relative to demand and storage. 

Dynamic Adaptation: A key feature of this system is the RL agent's ability to adapt in real time to 

changes in solar generation (𝑃𝑔𝑒𝑛) and grid demand (𝐿𝑑), which fluctuates throughout the day. Since 

the state of the environment is evolving, the agent's policy is repeatedly adjusted to use the best decision-

making. Continual learning is what underpins this adaptation. This method allows the agent to 

continuously enhance decision-making by refining the policy using techniques like Deep Q-Networks 

(DQN) or Q-learning. This process modifies a policy by adjusting action choices based on real-time 

feedback (e.g. incentives and modified action options). With this capability, the system can efficiently 

react to changes in environmental conditions, grid load, and battery storage and optimize energy 

management. 

v. Integration and Simulation 

During the integration and simulation phase, a simulated test environment and smart grid datasets 

regarding grid load patterns, solar generation profiles, and storage capacity constraints are created. 

These datasets emulate real-world conditions that help predict energy consumption patterns, solar 

output fluctuations, and battery performance in different modes of operation. In addition, the simulation 

incorporates actual solar energy parameters, including solar radiation, temperature, cloud cover, and 

wind speed, enabling the virtual grid to closely mimic real grid conditions. This thus allows the RL 

agent to learn and adapt in dynamic energy contexts, ensuring the effective optimization of grid 

operations, solar generation, and energy storage management in the real world. 

4. Result and discussion  

This method causes a 20% increase in Solar Energy Utilization, a 15% reduction in Grid 

Dependency, and a 10% reduction in Energy Loss during peak hours, all of which lead to better Grid 

Stability in smart energy management. The findings showcase how such a method can optimize solar 

energy use, efficient energy distribution and intermittency challenges with renewable energies all in 

one, hence the solution being scalable and sustainable and finding a way to the grid of reliable power. 
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a. Performance Metrics 

This section provides a benchmark between the proposed SEMS-PA2C and other traditional methods 

on metrics such as solar energy utilization efficiency, grid consumption characteristics, and loss of 

energy reduction. For instance, the benchmark considers factors such as artificial neural networks 

(ANN) [10], GSMFS [11] and LSTM [16], which, when used together alongside SEMS-PA2C, yield 

an improvement of 20% in solar energy, 12% in artificial neural networks, as well as a 15% decrement 

in grid dependency and 6% in LSTM. SEMS-PA2C performs better on the modified energy peak hours 

method than ANN, GSMFS and LSTM by an impressive 10%. The SEMS-PA2C, as is evident in these 

results, has a greater degree of adaptability and efficiency when compared to other smart grid energy 

management systems. 

Solar Energy Utilization Efficiency (SEUE) measures how effectively a solar energy system converts 

available solar energy into usable energy. It is typically expressed as a percentage and calculated using 

equation 13.  

𝑆𝐸𝑈𝐸 =
𝑈𝑠𝑎𝑏𝑙𝑒 𝑆𝑜𝑙𝑎𝑟 𝐸𝑛𝑒𝑟𝑔𝑦 𝑂𝑢𝑡𝑝𝑢𝑡

𝑇𝑜𝑡𝑎𝑙 𝑆𝑜𝑙𝑎𝑟 𝐸𝑛𝑒𝑟𝑔𝑦 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
× 100                  (13) 

where 𝑈𝑠𝑎𝑏𝑙𝑒 𝑆𝑜𝑙𝑎𝑟 𝐸𝑛𝑒𝑟𝑔𝑦 𝑂𝑢𝑡𝑝𝑢𝑡 is the energy delivered to the grid or stored in batteries after 

system losses and 𝑇𝑜𝑡𝑎𝑙 𝑆𝑜𝑙𝑎𝑟 𝐸𝑛𝑒𝑟𝑔𝑦 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 is the potential solar energy given the irradiance 

and panel capacity. 

Figure 3 compares SEUE among methods, SEMS-PA2C, ANN, GSMFS, and LSTM, over 100 epochs. 

SEMS-PA2C shows the highest SEUE, with values of approximately 90%, which indicates its strong 

optimization ability. The second highest is LSTM, showing a little lower efficiency but good 

performance in time-series prediction. GSMFS and ANN are moderate, with GSMFS outperforming 

ANN due to the optimization of feature selection. The oscillations represent adaptive behaviour over 

epochs, and SEMS-PA2C exhibits stable and consistent performance. This comparative analysis has 

brought out the effectiveness of SEMS-PA2C in maximizing solar energy efficiency, which certainly 

is a reliable approach for managing renewable energy systems in smart grids. 

                      

Figure 3. SEUE analysis 

Grid Dependency Reduction (GDR): Quantifies the degree to which a solar energy management system 

succeeds in weaning dependency on the grid with solar energy and battery storage. It is usually 

expressed as a percentage and calculated using the equation 14. 

𝐺𝐷𝑅 =
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐺𝑟𝑖𝑑 𝑈𝑠𝑎𝑔𝑒−𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝐺𝑟𝑖𝑑 𝑈𝑠𝑎𝑔𝑒

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐺𝑟𝑖𝑑 𝑈𝑠𝑎𝑔𝑒
× 100                 (14) 

where 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐺𝑟𝑖𝑑 𝑈𝑠𝑎𝑔𝑒 is the total electricity consumed from the grid before optimization (kWh) 

and 𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝐺𝑟𝑖𝑑 𝑈𝑠𝑎𝑔𝑒 is the total energy drawn from the grid with optimization (kWh). 
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Figure 4. GDR analysis 

Figure 4 shows the GDR performance comparison among four methods, SEMS-PA2C, ANN, GSMFS, 

and LSTM, for 5 configurations over a range of epochs. There is one subplot for each technique. Hence, 

there are trends in GDR for all configurations. In this case, each line represents configuration, the x-

axis represents epochs, and the y-axis represents the percentage of GDR. The performance of SEMS-

PA2C, ANN, GSMFS, and LSTM can be analyzed individually, showing variations in GDR across 

configurations. This setup directly compares each method's effectiveness in reducing grid dependence 

under different conditions. The legend shows the configurations, and the layout is such that it maximizes 

readability and ease of comparison. 

Energy Loss Reduction (ELR) measures a system's ability to minimize energy losses while operating. It 

is usually given in percentage and calculated using equation 15. 

𝐸𝐿𝑅 =
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝐿𝑜𝑠𝑠−𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦 𝐿𝑜𝑠𝑠

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝐿𝑜𝑠𝑠
× 100                              (15) 

where 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝐿𝑜𝑠𝑠 is the energy loss in the system without optimization or intervention and 

𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦 𝐿𝑜𝑠𝑠 is the energy loss after applying optimization techniques, such as SEMS-PA2C, 

ANN, GSMFS, or LSTM. 

Figure 5 visualizes the cumulative Energy Loss Reduction achieved by four methods, SEMS-PA2C, 

ANN, GSMFS, and LSTM, over numerous epochs. In this line-up, each colourful segment shows a 

contribution of the method to the overall ELR. Their accumulation in the y-axis shows how ELR trends 

change concerning time on the x-axis. This figure points out each contribution to saving energy loss in 

an easily comparable manner. Its stacked design shows cumulative effect—therefore, easily pinpointing 

the methods that work consistently or start dominating at any of the epochs. 
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Figure 5. ELR analysis 

5. Conclusion 

The SEMS-PA2C, an AI-driven solar energy management system to improve efficiency, sustainability, 

and reliability in smart grids, is proposed in this paper. In this respect, integrating Gradient Boosting 

and LSTM for predictive analytics with Reinforcement Learning for adaptive control has been 

instrumental in realising the system's intended goal of significantly improving solar energy utilization 

and grid stability. Simulation results show that solar energy use increases by 20% and decreases grid 

dependency by 15% compared to conventional systems, while it reduces energy losses during peak 

hours by 10%. The findings underline the ability of the system to deal with the challenges of the 

intermittency of renewables and the fluctuations in demand for smart grids. It may be weakened in areas 

where data availability is low or weather conditions are highly variable since it depends on 

meteorological and historical data. Further work is needed to optimise computational efficiency and 

extend the system to support different energy sources other than solar. Further, incorporating real-time 

feedback from IoT devices into simulations and their extension to include dynamic market conditions 

will enhance adaptability. In general, SEMS-PA2C is a quite promising framework for integrating 

renewable energy within smart grids for a greener and more reliable energy future. 
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